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Abstract— It is well understood that the CREB protein is 

highly involved in neuronal mechanisms underlying 

memory and learning in mammalian brain, and deficiencies 

in CREB activity can result in transition to certain 

pathological conditions. In this paper, we use some 

published experimental data, along with a neuronal system 

composed of the Izhikevich neuron model, to characterize 

how CREB abnormalities can alter neuronal signals and the 

system behavior. The abnormal data are extracted from 

intracellular recordings collected from the neurons of 

transgenic mice expressing VP16-CREB - a constitutively 

active form of CREB - whereas the normal data are 

obtained from the wild-type mice neurons. Upon estimating 

the neuron model parameters from the experimental data, 

we observe that the model exhibits good fit to both normal 

and abnormal data, for various synaptic input currents. To 

study the effect of CREB abnormalities on the considered 

neuronal system, we use the information theoretic 

redundancy parameter. It basically measures - for the 

system output neuron - the amount of spike count 

information overlap that exists between the states of the 

stimulus currents injected to the input neurons. Our 

analysis reveals a noticeable increase in the information 

redundancy, when CREB behaves abnormally. This finding 

motivates further exploration of the biological implications 

of the information redundancy in neuronal systems, and its 

use as a parameter to model abnormalities in CREB and 

perhaps other important transcription factors involved in 

learning and memory. 

Keywords— CREB, Izhikevich model, neuronal parameters 

estimation, information redundancy. 

I. INTRODUCTION 

Learning and memory are key functions of the cognitive 

human brain. CREB, a cAMP response element-binding 

protein (with cAMP denoting the cyclic adenosine 

monophosphate), is highly involved in learning and 

memory. Alterations and abnormalities such as its 

sustained activation can result in pathological conditions 

such as seizures and loss of neurons. Given its 

importance, targeting CREB and its pathway are of 

interest in therapeutic developments for several 

neurodegenerative disorders such as Alzheimer’s disease 

and Huntington’s disease [1]. 

Compared to the research efforts that study CREB as a 

molecule whose activity is regulated by a molecular 

network, e.g., [2], and focus on intraneuronal molecular 

interactions, in this paper our goal is to study and 

understand how CREB and its malfunction can affect a 

neuron and its action potential spike signals, as well as a 

system of such neurons. 

Towards this goal, we use the experimental data given in 

Table 1 and Figure 1 of [1] that include both normal and 

abnormal CREB scenarios and the associated action 

potential signals, to estimate the parameters of a neuron 

model for both CREB scenarios. As we will see later in 

the paper, the model shows good fit to the experimental 

data. We then use an information theoretic parameter 

called redundancy [3], to model and study how the 

behavior of a neuronal system can change due to a 

deficiency in CREB activity. The use of information 

theoretic parameters and methods in neuroscience is 

advantageous for multiple reasons [3]. For example, they 

define and quantify how much information neuronal 

signals carry, they are model independent, they can be 

applied to various combinations of data, regardless of 

whether the relations among the data are linear or 

nonlinear, they are suitable for multivariate data 

modeling and analysis, and also can handle different 

types of data such as voltage, current, spike count and 

spike timing together. 

The rest of the paper is organized as follows. Estimation 

of the parameters of the Izhikevich neuron model [4] 

using the measured data of [1] that reflect normal and 

abnormal CREB activities can be found in Section II, 

along with a comparison of the model results with the 

experimental data. The considered neuronal system is 

discussed in Section III, and its behavior is studied 

without and with the abnormality of CREB. The system 

behavior is further characterized using the redundancy 

parameter, and changes in this parameter due to the 

CREB deficiency are analyzed in Section III as well. 

Concluding remarks are provided in Section IV. 

II. CALCULATION OF NEURONAL PARAMETERS USING 

EXPERIMENTAL DATA 

Given the importance of CREB in learning and memory 

formation, CREB-related experimental data of [1] is used 

here to first compute several neuronal parameters for two 

different types of neurons: an abnormal neuron where 



 

 

CREB exhibits abnormal activity, and a normal neuron. 

The abnormal neuronal data are intracellular 

measurements collected from neurons of transgenic mice 

expressing VP16-CREB, which is a constitutively active 

form of CREB, whereas the normal neuronal data are 

collected from neurons of wild-type mice. Both of the 

normal and abnormal experimental neuronal firing data 

sets include measured numbers of action potentials, in 

response to several different currents injected to the 

neurons [1]. Basically, when a neuron receives an 

electrical transmembrane current, its membrane potential 

changes according to the intensity of the input current. 

An action potential (AP) spike is generated when the 

neuron membrane potential reaches its apex upon 

receiving high enough input current injection [5][6]. And 

AP number is the number of spikes of the membrane 

potential, for a given injected current. 

In this section, we use the experimental data to calculate 

the parameters of the Izhikevich model, which is widely 

used for modeling the dynamics of spiking neurons 

[4][5]. This allows to understand how the neuronal 

parameters vary, when comparing normal and abnormal 

neurons of wild-type and mutant mice, respectively. This 

is also important when studying a system of several 

neurons later in the paper. 

In what follows, first a brief overview of the Izhikevich 

model is presented in Subsection A, followed by 

neuronal parameter calculations using the experimental 

data of normal and abnormal neurons in Subsections B 

and C, respectively. 

A. The Izhikevich Neuron Model 

This model is widely used by various groups of 

researchers and while it is computationally simple to 

implement, it incorporates certain biophysical aspects of 

more complex models and therefore is capable of 

reproducing different neuronal behaviors. The Izhikevich 

neuron model is composed of two ordinary differential 

equations [4][5]: 
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where ( )v t is the neuron membrane potential, ( )u t  is the 

membrane recovery variable and ( )I t  represents the 

synaptic input. Furthermore, C  is the membrane 

capacitance, rv  is the resting potential, thv  represents the 

instantaneous threshold potential, a  is the recovery 

variable time scale, b  reflects the recovery variable 

sensitivity, d  refers to the after spike recovery variable 

reset, and c  represents post action potential voltage reset 

value. Equations (1) and (2) need the following 

accompanying after-spike reset: 
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where peakv  is the spike cutoff voltage. The above 

equation shows how ( )v t  and ( )u t  are reset, if the 

membrane potential spike reaches its peak value. 

When it comes to model parameter calculations in the 

next two subsections, the following equations are used 

[5]: 
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represents the steady state current-voltage relation, and 

rheoI  is the rheobase current defined as the minimum 

injected current for the neuron to fire. Equation (7) is 

obtained by noting that the maximum of ( )I V
 in 

Equation (6) can approximate the rheobase current [5]. 

We also have the following relation [5]: 

                                     
inR C = , (8) 

where   is the membrane time constant. 

In the next two subsections, all the model parameters in 

Equations (1)-(4) are either directly taken from [1], or 

determined by substituting some of the measured 

parameters reported in [1] into Equations (5)-(8), or 

estimated from the measured data presented in [1]. 

B. Parameter Calculations for a Normal Neuron Using 

Experimental Data 

All the numerical parameters for a normal neuron are 

presented in the second column of Table 1, obtained as 

explained at the end of the previous subsection, and 

specified in the footnotes of Table 1. The particular 

experimental data and parameters of [1] used here for a 

normal neuron are labeled as “Wild-type On” in [1]. 

The parameters a and d are estimated by minimizing the 

mean-squared-error (MSE) representing the difference 

between the number of spikes of the Izhikevich model, 

i.e., the measured number of APs in [1]. 

Comparison of the number of spikes of the model and the 

measured number of spikes for various synaptic input 

currents, as shown in Figure 1, indicates the suitability of 

the model and the calculated parameters. 



 

 

 

C. Parameter Calculations for an Abnormal Neuron 

Using Experimental Data 

All the numerical parameters for an abnormal neuron are 

presented in the third column of Table 1. They are either 

directly taken from [1], or determined by substituting 

some of the measured parameters reported there into 

Equations (5)-(8), or estimated from the measured data 

(see the footnotes of Table 1). The specific experimental 

data and parameters used here for an abnormal neuron are 

labeled as “VP16-CREBhigh On” in [1]. 

Similarly to the normal neuron, a comparison of the 

number of spikes of the model and the abnormal neuron 

measured number of spikes for various synaptic input 

currents [1] is shown in Figure 1, generated by choosing 

a and d such that the MSE between the model and the 

data is minimized. The good fit of the model to the 

measurements demonstrates that the model and the 

calculated parameters reasonably represent the 

experimental data. 

III. NEURONAL SYSTEM ANALYSIS IN THE PRESENCE OF 

AN INTRANEURONAL MOLECULAR ABNORMALITY 

A. A Neuronal System 

As discussed, and demonstrated previously, 

intraneuronal abnormalities such as constitutively active 

CREB can alter the spiking behavior of individual 

neurons. In this section, we consider a small neuronal 

system [3] to study how the intraneuronal abnormality of 

each neuron affects the interactions among neurons in a 

neuronal system. Here we consider a system of three 

neurons shown in Figure 2, where the excitatory neurons 

E1 and E2 drive the excitatory neuron E3. The neurons 

E1 and E2 receive the two separate stimulus currents A 

and B, that can have different levels of correlations. We have 

simulated this system using a neuroscience toolbox [3], as 

explained below. 

Simulations are performed with a 0.1 ms time step. As 

Figure 2 shows, E1 and E2 receive two current pulses A 

and B, respectively, with equal durations of 500 ms and 

equal amplitudes of 500 pA. A pink noise is also 

simulated to represent membrane noise, with a noise 

power that is inversely related to the frequency. This 

noise results in spontaneous firings. The synaptic weight 

among the neurons is set at 100 pA [3]. Other parameters 

of the system are taken from Table 1, to simulate a 

normal or an abnormal system, respectively. The 

generated spikes by all the neurons and in response to 

various stimulus currents are shown in Figure 3A and 

Figure 3B, for normal and abnormal systems, 

respectively. 

The increased number of spikes in Figure 3B for each 

neuron receiving a current pulse in the abnormal system 

is noteworthy, compared to Figure 3A that depicts the 

normal system. This is consistent with what we observe 

in the experimental results in Figure 1, i.e., a typically 

increased measured number of spikes for a given input 

current in an abnormal neuron, when compared to a 

normal neuron. 

 

 

 

 

Figure 1. Number of spikes versus the synaptic input current 

in the normal and abnormal neurons. 

Table 1. Model Parameters for Normal and Abnormal Neurons 

Parameter 
Normal     

Neuron 

Abnormal 

Neuron 

a 0.01 3 0.02 3 

b -0.205 2 -0.34 2 

c -57 mV 1 -55 mV 1 

d 176 3 115 3 

k 0.191 2 0.142 2 

Rin 181 MΩ 1 210 MΩ 1 

τ 25 ms 1 21 ms 1 

C 138 pF 4 100 pF 4 

vr -70 mV 1 -70 mV 1 

vth -40 mV 1 -34 mV 1 

vpeak 68 mV 1 68 mV 1 

Irheo 40 pA 1 40 pA 1 

 
1 Directly taken from [1] 
2 Calculated using Equations (5)-(7) 
3 Estimated from the measured data presented in [1] 
4 Calculated using Equation (8) 



 

 

B. Analysis of the Redundancy in the Neuronal System 

To gain further insight beyond visual differences among 

neuronal spike signals in normal and abnormal systems, 

we use an information theoretic parameter called 

redundancy [3]. 

Advantages of using information theoretic measures and 

parameters in neuroscience are already outlined in the 

Introduction section. 

The redundancy quantity 
1 2( , ; )R X X Y  is the mutual 

information between the pair of input variables 
1 2( , )X X  

and the output variable Y, with an additional 

minimization over 
1X  and 

2X  [3]. The redundancy 

parameter essentially specifies the minimum overlap in 

the amount of information which is redundantly provided 

by both 
1X  and 

2X  about each state of Y individually. In 

this paper and similarly to [3], 
1X  and 

2X  in 

1 2( , ; )R X X Y  represent the (ON/OFF) states of the two 

current stimuli A and B applied to the neurons E1 and E2, 

respectively, whereas Y represents the action potential 

spike count of the neuron E3. All these are graphically 

depicted in Figure 2 and Figure 3. 

In Figure 4 we observe the information redundancy in the 

neuronal system of Figure 2 composed of three normal 

neurons, where the two neurons E1 and E2 receive the 

two current stimuli with various degrees of dependency, 

characterized by the parameter D. This parameter 

allocates the probabilities of 0.25 ,D+ 0.25 ,D−

0.25 D−  and 0.25 D+ , respectively, to the four states 

of the stimulus pair (A,B): (OFF,OFF), (ON,OFF), 

(OFF,ON) and (ON,ON) [3]. When 0.25,D = −  the anti-

correlated case, the two stimuli take opposite states only. 

In the 0D =  uncorrelated case, the two stimuli take all 

possible states with equal probabilities. Finally, if 

0.25,D =  the correlated scenario, the two stimuli take 

exactly the same states. 

As Figure 4a shows, the redundancy is mostly small for 

the anti-correlated, uncorrelated, and correlated  

stimulation scenarios in the normal neuronal system. This 

is persistently observed for other values of D, as shown 

in Figure 4b. The increase of the redundancy with D in 

Figure 4b is a reasonable trend, because as D increases, 

the states of the two stimuli are more likely to be the 

same. This means the overlap between the information 

individually provided by the two stimuli increases, i.e., 

more information redundancy in the system, when the 

two inputs become more correlated. 

A comparison of the redundancy results of the abnormal 

neuronal system in Figure 5 with those of the normal 

system in Figure 4 reveals a noticeable increase in 

redundancy, especially for 0D  . In other words, the 

amount of redundant information in the abnormal system 

is evidently increased. This is an interesting finding and 

encourages further research to understand the biological 

implications of the increased redundancy in an abnormal 

neuronal system where the neurons exhibit a memory- 

related intraneuronal molecular abnormality, i.e., a 

constitutively active form of the important transcription 

factor CREB. 

 

Figure 2. A system of three neurons where the two neurons 

E1 and E2 receive two stimulus currents A and B, 

respectively. 

A) 

 

 
B) 

 

 

Figure 3. Spike rastergram of the neuronal system of Figure 2, 

together with the two stimulus currents: A) The three neurons 

are normal, B) The three neurons are abnormal. 



 

 

 

IV. CONCLUSION 

Given the importance of the CREB protein in learning 

and memory, in this paper we have modeled and analyzed 

the effect of CREB deficiencies in a neural system. More 

specifically, first we have fitted a neuron model to some 

experimental data, by estimating the model parameters 

from the data. We have observed that the model 

accurately fits the data, for both normal and abnormal 

CREB scenarios. Then we have considered a system of 

few neurons where each neuron is characterized using the 

above model whose parameters are estimated from 

measured data. Consistent with the measured data, our 

simulations show an increased number of spikes for each 

neuron receiving a current pulse in the abnormal system. 

Finally, we have computed the redundancy parameter in 

both normal and abnormal neuronal systems, for different 

correlation levels between the stimulus input currents. 

Our results indicate that the amount of redundant 

information in the abnormal system is increased, 

compared to the normal system. Therefore, one may 

conclude that perhaps the amount of information 

redundancy in a neuronal system can be used as a 

measure to model the departure of the system from its 

normal behavior, in the presence of an abnormality. 

Further research using other datasets and other neuronal 

systems is needed to better understand the utility of the 

information redundancy concept in modeling the role of 

CREB or other important proteins and transcription 

factors that are involved in learning and memory. 

The considered neuronal system in this paper is 

composed of three neurons. The small size of this system 

has allowed us to interpret the findings. One way of 

expanding this study is to apply it to other neuronal 

systems that have various combinations of excitatory and 

inhibitory neurons, similarly to those considered in [3]. 

 
    (a)  

 
        (b) 

Figure 4. Information redundancy in the neuronal system of 

Figure 2 composed of three normal neurons, for different 

levels of correlation between the two stimuli: (a) Redundancy 

versus time, (b) Redundancy versus the correlation parameter 

D. 

 
     (a)  

 
   (b) 

Figure 5. Information redundancy in the neuronal system of 

Figure 2 composed of three abnormal neurons, for different 

levels of correlation between the two stimuli: (a) Redundancy 

versus time, (b) Redundancy versus the correlation parameter 

D. 



 

 

The lessons learned from such analyses will pave the way 

for extending the work to much larger neuronal systems. 
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